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The E-e vibronic interaction in octahedral com- 
plexes represents the widely studied part of the 
Jahn-Teller effect demonstration in coordination 
chemistry (see, e.g. the review articles [l-3]). The 
main aim of our work was to determine the numeri- 
cal values of particular vibronic constants using the 
energy hypersurface obtained from the MO calcula- 
tions. This points out the necessity of investigating 
the importance of including: 

i) the cubic terms in normal vibrations (e.g. the 
anharmonicity of normal vibrations); 

ii) the alg normal vibration into vibronic Hamil- 
tonian in our investigations. 
The inclusion of these contributions (quadratic 
and cubic terms in normal vibrations all, eL and 
vibronic interactions E&al, + e& up to the quadratic 
terms in Taylor expansion of vibronic interaction 
operator) leads to the following total energy expres- 
sion : 

AE=E-Eo=W-4D (1) 

where E. is the total energy of optimal Oh configura- 
tion; 

Fig. 1. Coordinate system for Cud-. 

w=nK,Q:t41~(QqtQ~)tTaQ:t 

+ T,,QI(Q; + Q:) + T, t-Q”, + 3Q,Qi4l; (2) 

and 

D = (A - ZQ1)‘(Q; + Q:) + B’(Q: + Q:)” + 

+ 2B(A - ZQ,) X (Q”, - 3Q,Q:); (3) 

Q1, Q2, Q3 are the normal coordinates of the allr 
and e, normal vibrations (see Fig. 1 and Table I); 
K,, & (T,, T,, T,) are quadratic (cubic) constants 
of the particular normal vibrations; A (B) is linear 
(quadratic) e, vibronic constant; Z is the eg-al, 
coupling vibronic constant. These terms were only 
partially included in the previous works [4-91. 

Using eqn. (1) the CNDO UHF [ 10, 1 l] energy 
hypersurface was approximated. The particular 
constants were obtained by the non-linear least 
squares fit using the Fletcher-Powell minimiza- 
tion of function 

F = f: wi (A& - AgNDo)? (4) 

TABLE I. Normal Coordinates for au and eg Vibrations in Octahedral Complexes. 

Symbol Symmetry Normal Coordinate 

Ql 

Q2 

Q3 

ak3 

eg 

% 

1 
3 (Arl + Ar2 + AIJ + Ar4 + Ar5 + Are) 

& (Arl + Ar2 - 2Ar3 + Ar4 + Ars - 2Ar6) 

% (Ar2 - Art + Ar5 - Arq) 

p=Jizz $I = arctg $ 



L2 

TABLE II. Characteristics of the Energy Hypersurface for System CuFt-. 
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Vibronic constants 

Ka [lO”eVm -2 ] 
K, [lOaoeVm -2 ] 
A [lO”eVm -2 ] 
B [lO”eVm -2 ] 
2 [lOaoeVm -2 ] 
L [lOmeVm -2 ] 
T ae [lOJOeVm -2 ] 
T, [lOJOeVm -2 ] 

A B C 

44.146 * 0.004 45.655 t 0.001 41.302 * 0.004 

32.613 f 0.002 32.861 f 0.001 31.970 f 0.004 

1.04125 i 0.00005 1.05301 * 0.00003 1.0192 f 0.0001 

0.52286 f 0.00003 0.739 f 0.002 -0.306 f 0.005 

4.4053 f 0.0003 3.9648 0.0002 f 

0.19432 f 0.00002 - - 

-0.6252 f 0.0001 _ - 

1.5291 f 0.0006 - - 

Coordinates of minimal points: 

Ql [lO-lo m] 

: lradl [lO-lo m] 

AE [eVl 

Coordinates of saddle points: 

Qr [ 1O-1o m] 

P [lO-lo m) 

9 lradl 
AE [eVl 

F 

Correlation coefficients 

-0.003457 + 0.000001 -0.0029704 f 0.0000008 - 

0, 0.034285 2/3n, 413 ? 0.000004 r 0, 0.033929 2/3n, 4/3n 0.000006 0.03250 * 0.00002 

1/3n, n, 5/3n 

-0.017816 +_ 0.000003 -0.017862 0.000004 f -0.01656 2 0.00001 

A B C 

-0.0031096 + 0.0000008 -0.0026689 * 0.0000007 - 

0.031769 f 0.000003 0.030973 * 0.000005 0.03128 + 0.00002 

l/3 lr, n, 513 n l/3 513 II n, A, 0, 213 413 = w, 

-0.016568 + 0.000003 -0.016308 0.000004 f -0.01594 f 0.00001 

0.109385 0.166727 0.523567 

0.999946 0.999671 0.997551 

where AEoNDo values were obtained by the CNDO 
mapping if the energy hypersurface near the optimal 
Oh geometry. The weighting factors Wr were defined 
as 

wi = (AEFNDo)-2 (5) 

so that the relative weight of the nearest surroundings 
of optimal Oh geometry were preferred. 

The described method is illustrated by the results 
obtained for the CuFz-complex (Table II): 

A) using the complete equations (l-3); 
B) neglecting the anharmonic part of normal 

vibrations (T, = 0, T,, = 0, T, = 0); 
C) as B plus neglecting of coupling term between 

alg and es normal vibrations (Z = 0). 
The values of particular constants with their 

standard deviations are presented together with the 
geometries and energies of extremal points of energy 
hypersurface. It is obvious that for practical use of 
the proposed method only the first two or three 
significant digits of obtained values may be consider- 
ed. In the presented results more significant digits 
are included in order to compare the reliability of 
individual approaches (A, B, C). 

The comparison of the F-values and the standard 
deviations of individual constants for all the consider- 
ed cases shows that the best fit is obtained in case A). 
It must be pointed out that the omission of al,-e, 
coupling term (case C), frequently employed so far, 
causes the qualitative change of the energy hyper- 
surface shape (the interchange between minimal and 
saddle points) as illustrated in Table 2. 

It can be summarized that the up to now 
employed simplifications of equations [l-3] 
frequently failed already in a qualitative description 
of the energy hypersurface (the mutual interchange 
between the minimum and saddle points including 
the ars vibration). About 30 coordination compounds 
are presently under calculation in our laboratory, 
and results obtained (which will be published later) 
support this conclusion. The presented method 
well describes not only qualitatively but also 
quantitatively, the vibronic interactions. It must be 
stated here that the method proposed may be of 
course used with another more sofisticated MO 
method. The type of MO method used is not so 
important for numerical tests of suitability of the 
developed method (done in the present work). 
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